IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

1

Finite-temperature Neel transition in the CPN' model with one periodic spatial dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 1557
(http://iopscience.iop.org/0305-4470/27/5/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:41

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 27 (1994) 1557-1574, Printed in the UK

Finite-temperature Néel transition in the C PY~! model with
one periodic spatial dimension

Sebk-ln Hong and Jae Kwan Kim

Department of Physics, Korea Advanced Institute of Science and Technology, 373-1, Kusung-
dong, Yusung-ku, Tasjon, Kotea

Received 6 September 1993, in final form 11 October 1993

Abstract. We investigate the finite-temperature Néel transition of the anisotropic large-V
C P¥-1 model with one periodic spatial dimension using the effective potential method. Long-
range Néel order (LRNO) and the equation of the critical line are obtained. In 141 dimensions, the
one-loop approximation fails badly for large but finite & by the Mermin-Wagner theorem. But
for infinite N, which is not realistic, it becomes exact and the appearance of LRNO is valid. The
(3 + 1)-dimensional CP¥—! model is investigated as 2 model of antiferromagnetism in high-
temperature superconductors, where the anisotropic parameter represents the weak interlayer
coupling, The phase structure is very different from that of the (1 4+ 1)-dimensional infinite-V
CPY¥-! model.

1. Introduction

It is well known that the occurrence of high-temperature superconductivity is closely related
to the spin degree of freedom of electrons in the Cu~O planes which can be described by
the antiferromagnetic Heisenberg model. In the continuom limit this model is reduced to the
C P! nonlinear o model as a low-energy effective field theory [1]. Since we are concerned
with the phase transition of Néel order which is a long-range phenomenon, it is convenient
to consider the C P! model instead of the lattice Heisenberg model.

According to the Mermin—Wagner theorem [2], the Heisenberg model in space
dimension d < 2 does not exhibit spontaneous breaking or the appearance of LRNQ at
any non-zero temperature. It has been shown that the Mermin—-Wagner theorem holds for
the large-N CP¥-! model in the infinite-size limit [3].

On the other hand, high-temperature superconductivity is characterized by a layered
{or planar} structure [4] and has been thought to be described effectively by (2 + 1)-
dimensional physics (e.g. the Chern—Simons theory). Thus if we regard high-temperature
superconductivity as a (2 + 1)-dimensional phenomenon, it follows from the Mermin—
Wagner theorem that high-temperature superconductors cannot have LRNO at any non-zero
finite temperature. This contradicts the actual fact that some undoped materials have LRNO
below some critical temperature Ty (Néel temperature). Therefore the appropriate model of
magnetism in high-temperature superconductors is the (3 + 1)-dimensional anisotropic C P!
model with weak interlayer coupling [3,5}; we will not consider their detailed structures.

Recently the Gross-Neveu model and the CP¥~! model in 1 + 1 dimensions were
investigated on non-trivial topologies (i.e. on cylindrical and toroidal spacetimes) [6-8].
Their phase structures turned out to be rich. Physically toroidal spacetime §! x §!
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corresponds to finite temperature [9] and finite size [10] (more rigorously it corresponds to
periodicity in space).

In the present paper we investigate the finite-temperatwe Néel transition of the
(3 + 1)-dimensional anisotropic large-N C P¥~! model with weak interlayer coupling and
periodicity in the third space dimension by making use of the effective-potential method
(9,11]. In addition, we consider the (I + 1)-dimensional large-¥N CP¥~! model with
spatial periodicity and examine the consistency with the Mermin—Wagner theorem. From
the equilibrium condition of the effective potential we can find LRNO and the equation of
the critical line (i.e. the phase diagram).

In section 2 we find the finite-temperature effactive potential of the (d + 1)-dimensional
CP¥-1 model with one periodic spatial dimension, and its equilibrium condition. In
section 3 the (1 + 1)-dimensional C P¥~! model is considered. Contrary to the Mermin—
Wagner-Coleman theoremm [12], it has a regicn in the phase diagram where LRNO appears,
which implies that the one-loop approximation fails badly for large but finite N. However,
for infinite N, the one-loop approximation becomes exact [13] and the existence of LRNO
is valid. In section 4, we consider the (3 + 1)-dimensional CP¥~! model as a model
of magnetism in high-temperature superconductors. For the parameters of the real high-
temperature superconductor La;CuQa, we obtain a phase diagram and ERNO which are very
different from those of the {1+-1)-dimensional infinite-N C P! model. Section 5 contains
a summary and our conclusions.

2. Effective potential and equilibrinm condition in d + 1 dimensions

We find the finite-temperature effective potential of the anisotropic large-N € P¥~! model
with one periodic spatial dimension in d4-1 dimensions. We work in Minkowski spacetime
with the metric g,, = diag(l, —1,..., —1). For finite-temperature field theory we adopt
the imaginary time formalism [9], where the time axis x7 is compactified to a circle of
circumference (—ig). In addition, for one periodic spatial dimension x¢, the x¢ axis is also
compactified to a circle of circumference L which is a periodic length.

Our model is given by the Lagrangian

d—1
L= D,nD*n+aDmD —c (;nP ;}) (1)

u=0

where n = (r1(x), ..., ny(x)) and Dyn = (Bp+iA,)n. Here A, and ¢ are auxiliary fields.
t is the ratio of the dth-space dimensional coupling constant f; to the coupling constant f
in the other spatial dimensions, that is, o = fi/f. o gives the anisotropy (or the interlayer
coupling) to the € P! model. Since thc fields in Lagrangian (1} are bosonic, they are
taken as periodic functions of x® and x¢, though the antiperiodic (or twisted) boundary
condition can be given in a mathematical sense [14].

The partition function of Lagrangian (1) is given by

~ig L
ZB, L) = f Dn D% Do DA, exp (i fo dx® fo dx? f d?-lx .c). (2)

Integrating out the first N — 1 components of n (%) fields leaving only one component
ny (Fx) [3,5,10] in order to examine the appearance of LRNO, we obtain the effective
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action in terms of ny, iy and auxiliary fields

-ip L d—1
Sere(rn, fin, 0, Ay) =Nf dxof dxdfdd'lx[z DynyD¥ny
0 0

u=0

i
+ oDy Dy — o (I-"H\H2 - “‘):l

2f
d—1 )
+i(N — l)Tr]nl:EDnD’”‘—l-odeDd +cr] (3)
#=0

where we have rescaled ny —> 5/Nny and fiy — «/NAy.

Since we are concerned with the equilibrinm state, we consider only the constant
configurations of ny (Fiy) and o, and set Ay = Ny, Ay = Ax, 0 = O, Ay = 0.
We now make some comments about the assumption A, = 0: on spacetimes with non-
trivial topology, any constant gauge field cannot globally be gauged to zero without altering
the boundary condition of the quantum field along a non-contractible loop {8, 15, 16]. The
non-zero expectation value of A, has an influence on the effective potential [15]. Our
assumption A, = 0 is a special case, which may be appropriate for the investigation of
low-energy phenomena. In this case, Lagrangian (1) is reduced to the O (2N) nonlinear &
model which describes the long-distance properties of the Heisenberg O(2N) model [10].

For constant field configurations, we obtain

N—1 '
Ver(nal, 00) = Ndc(lnzvcl - -ilf) + Ta Wilo: B, LY 4

where

Wyloe; 8, L)

_ _}_. ir ﬁf iy [1-5- Oc :, (5)
T L e L @nyd-1 k2 + (2nm/B) + Qun/L'y?

n=—o0
and

_ L _
Us—= 6)

Here we used the fact that k0 = 2wm/(—iB) and k¢ = 2mn/L (where m and n are integers)
by the periodic boundary conditions. The primes on the summations denote the exclusion
of the zero mode (m = n = 0). Note that Wy and Vyr are symmetric under the exchange
of 8 and L'. If we rescale -

Ze_ff_ 2 |"N=lz - -
Vegr — NG [rp |” =~ —“—ﬁ f—af (N

then equation (4) is reduced to

Vest([nn |, 00) = Noe(inn, > — 1/2F) + (N — )Wyloe; B, L) (8
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Since the quantum correction Wy is divergent, it needs to be renormalized.
Now we find the equilibrium conditions (or the stationary phase conditions) from the
effective potential (8)

13V,

0=— 5 a_"ff = oeny, 9)
10V o 1

0= %90, = ml"=37

a4k 2em\*:  [27n\? -l
NﬁL’ NT L Y | | +(% ) )+ «| . o
Since we are concerned wn‘.h the existence of LRNO (i.e. ny, £ 0), o, = 0 from (9). Then
LRNO ny, is obtained from (10) after some renormalization.

3. Néel transition in 1 4 1 dimensions

In 141 dimensions, the appearance of LRNO is forbidden by the Mermin~Wagner—Coleman
theorem. For the (1 + 1)-dimensional large-¥ CPN~! model, we examine whether or not
this is the case in the one-loop approximation.

In order to find the effective potential (8), we evaluate Wi (oy; 8, L). In I+1 dimensions
we take oo = 1, since there is only one spatial dimension and thus the anisotropy of space
is meaningless

1 TR, Oc
Wil B.L)= 57 35 In [1 * Gamipy + (2=m/L)2]

1 =] o0 o,
=EEM=Z_M=ZWI“[I+(2nm/ﬁ)2+(2xn/.r,)2+ia] BL (1+ )

(11}
By successive applications of the summation formula
X - R, S o R
Zln[l } f dxln[1+ e ]+21 [1 xp(-2rva +b)]
n=—co 1 —exp(—2rlal)
(12)
we can find
Wi(os: B, L) = W (00) + AW (0c; B, L) (13)

where WFX'(o,) is the one-loop contribution to the effective potential in R® and
AWy (o B, L) is the effect of the change of topology (i.e. finite 8 and L)

2
WE (o) = f Fhe (1+5°—) : (14)

(2n)? k2
1 —exp(—/x%+ ﬂzac)]

2 o0
AWilos, B, L) = ;5—2/0 dx I“[ 1 —exp(—x)

4 & [1-exp(-/@rln/BY + %)
—LZI“[ ]

1 —exp(—2xLn/B)

2 [1=exp(~L/&)
+ﬂLm[ e ] as)



Finite-temperature Néel transition 1561

Note that AWy (a; § — 00, L — 00} = 0. AW|(o,; B, L) has a hidden exchange symmetry
between f and L. Though we can write AW {o; 8, L) in an explicitly symmetrized form
with respect to £ and L (that is, AW (o;; 8, L) = %[A‘Wl (oe; B, LY+ AW (o.: L, £)]), we
prefer the unsymmetrized expression (15) for later convenience.

Now we define some useful functions

0= [ [ L= SREATED)]
0 1 —exp(—x)

S

== dx— (16)

6 J, e —1
& T—exp(= JETInIBE D)
g(z, ﬁ, L) = ugl In [ j - exp(—zﬂ'Ln/ﬁ) :| (17)
(z) =In (1 —:_z'). 18

Since g(z) is manzifesﬂy finite, the summations in AW (o,; B, L} are also finite, thus
AW, ig finite but WIR is divergent. Therefore in order to renormalize V., it is sufficient

to renormalize the effective potential VX' in R?, where

2
Ve nw, |, 00) = Vegr(mn |, 0: B = 00, L = 00)

= Noo(lnn > = 172f) + (N — DWF (o)

1 N-1 A
= NO’G([nNclz - 5}:) = ?O‘c(ln% - 1) (19)

in the infinite momentum cutoff limit (A — o0). The cutoff dependence can be absorbed
in the renormalization of the coupling constant f. If we take the renormalization condition
as

1 o o (20)

nu,=0,00=M2 2]";-

19vE
N dc,

where M is the renormalization point and f; the renormalized coupling constant, we obtain
the renormalized effective potential in R”

1 N-—1 a,
VE (nnl oo) = 1'\’¢Tc(|3*h\4rc|2 - ) - wn—crc(ln — 1)

25 4 M2
= Noglny, P = 2= Iac(lni _ 1) (21)
4w 1))
with
2T N
op = Mrexp| — —] (22)
0 p[ WD
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Note that f; was absorbed into oy. Finally we find the renormalized effective potential V;
at finite temperature and finite size

Villnn,), 0 B, L) = VR (Iny], 00) + (¥ = DAWi(o2; B, L)

= NccinNciz - N4; 1 crc(lnEri - 1)

a0
h(L./5
w200 - D[ EESR + Zse /. 1+ | )
Using this renormalized effective potentlal V;, we find the equilibrium condition (10)
_18% 5, N-1_ o
=N, el Ty g

L 2N~ 1)[ f o 1
\sz + B0, expl{vx? + Bo) — 1

+5 2 WERTR F7 + Lo exply @R LTBY + e} = 1)}
n=1
L N
" 2L, (exp{LJaz} —1 1)] (24)
o N ﬂJ_ ) zlL
+2i‘l 1 ] O .
£ nexp{2wLn/g} — 1 e (25)

where for the last identity we expanded (24) for small o; with the help of the integration
formula [9]

o Xt 1 T
dx = —1—+ Y 1O()+0(® 26
fo N e et e AL (&) + 0 (a?) 26)

for small £ and 4*. Here y(= 0.577...) is the Euler constant. Since we are interested in
the appearance of LRNO (i.e. ny, # 0), o, = 0 from (9). Setting o, = ¢ in (25) and using
the identity [7]

21 1 mw L L
) T R Ty R [”( E)} @

and LRNO is given by

=2 (D) (2

where 7 is the celebrated Dedekind 5 function [17] which is defined as

@) =g [0 -q¢% (29)
n=1
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with g(z) = exp(2mwiz). Here we introduced the dimensionless quantities

- N
w12 = i

il B=ep L= JaoL. (30)

In (28), |fiy,|* must be positive definite in order to be physically meaningful, otherwise it
is set to be zero. The equation of the critical line is obtained from (28) by setting fiy, = 0:
exchanging 8 and L for convenience

L =4ne[nGA/D)T. - 3D

Note that both LRNO (28) and the equation of the critical line (31) have a hidden exchange
symmetry between § and L originating from the same symmetry of the effective potential.

3.0

5.0
L
4.0

3.0
2.0

1.0 _ N
Figure 1. The phase diagram in the § and L space. LRNO
0.0 appears in region I but not in region IL For L > Lo~
. T T i v Ty rrorg PATTTTIT TR
4.99), the system has no critical temperature (no phase
00 10 20 30 40 . 50 60 transition) while it has two critical temperatures (two phase
B transitions) for 0 < L < fg.

T VA 0 ST I N T O T O I I S A I 30 K

Figure 1 shows the phase diagram (or the critical ling). LRNO appears in region 1 of the
phase diagram but not in region I, The existence of LRNO contradicts the Mermin—Wagner—
Coleman theorem. Hence this implies that the one-loop (or large-N) approximation fails
badly for large but finite N. However, for the model with infinite N which is not a real
physical system, the one-loop approximation is exact and our results are valid; that is, LRNO
can exist. In the rest of this section, we will restrict ourselves to the infinite-N case. On
the other hand, if we see the phase in terms of the spin mass gap o, the opposite situation
occurs by (9). That is, there is dynamical mass generation in region II (i.e. o; # 0) but
not in region I (i.e. o, = 0) [8]. In the phase diagram there exists Lo such that the system
has two critical temperatures for fixed L satisfying 0 < L < Lo, while it has no critical
temperature for L > L,

Lo = 4me ™ [n(izo)]* ~ 4.99

where zo(= 0.5235) is the value such that 7'(izg) = 0. n(izo)(~ 0.8382) is the maximum
of n(iz). By the symmetry between g and L, the same holds under the exchange of § and
L.

Figure 2 shows LRNO 7y, (28) as a function of ,B and L. Fxgurc 3 is the cross sections
of figure 2 as functions of g for various fixed values of L < Eq. As expected from figure 1,
there exist two critical temperatures such that LRNO appears between them.
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X
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o,
2

q_.‘? ¥ 77 25 o
R R

Figure 2. The three-dimensional plot of LRNO 7y, as a function of § and L.

0.6 -

0.5

0.4

0.3
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- 0.1
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—
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O-O rlll|IIII[EIII|I||i|]l|t[|J||

00 1.0 20 30 40 5.0 6.0

B

Figure 3. LRNO 7y, as a function of g for various values of L < Lg; thatis, L = 1,2, 3,4
for curves (a){d), respectively. As expected from figure 1, these cases have two critical
temperatures between which LRNO exists,

4. Néel transition in 3 4- 1 dimensions

In this section we consider the effect of finite temperature and finite size (or periodicity) in
the third space dimension orthogonal to the planes on the Néel transition of the anisotropic
C PN~ model in 3+ 1 dimensions, which is regarded as a model of the magnetism in high-
temperature superconductors. In 3+ 1 dimensions the appearance of LRNO is not forbidden
by the Mermin—Wagner theorem.

From (8), the effective potential is given by
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Vesr(lnn, |, 00) = Noe(lnw, [ — 1/2F) + (N — DWs(oe: B, 1) (32)

where

O¢
Wiloe: 8. L) = E Z E f (2 )2 [ kX + (Qnem/B) + (lﬂ'n/L’)z] 2

with L' = L/./o. We write W as W3 = W3 4+AW3 where Wf is the one-loop contribution
to the effective potential in R* and A‘Wg, is the effect of the change of topology (i.e. finite 8
and L"). The cutoff dependence of W:f , which is manifestly divergent in the infinite cutoff
limit, cannot be absorbed into only one coupling constant renormalization since W3 has
two kinds of infinite terms [9). Hence Vi is not renormalizable in the infinite momentum
cutoff limit.

However, our interest is a physical quantity measurable by experiments, that is, LRNO
ry, which is obtained from the equilibrium conditions. We will find LRNO with finite
momentum. cutoffs refated to the lattice constants. The equilibrium condition (10) is

(34)

where

3W3(UC,)B?L) de 2rm 2 2Th 2 -1
N ﬁL’ZZ/ (%)2[ (T) +(?) +“=} - O

In order to regularize (35) and renormalize (34) we introduce the finite momentum cutoffs
[3,5): A is a two-dimensional momentum cutoff determined from the two-dimensional
lattice constant & by the relation

Aa =21 (36)

which conserves the area of the Brillouin zone for the antiferromagnetically ordered state
in the Cu~O plane. In addition, Az is the th1rd space momentum cutoff which is related to
the third space lattice constant a3 by

Asaz=m (37)

then

e s Y A ]
80, 4npL et e | T Qrm/BY + @anjL + 00 )

We restrict ourselves to the o, = 0 phase where LRNO appears

8W;

e lg=0

41

= Wi(a% 8, L)

= WR(AD + AW (A% 8, 1), (38)
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Here
wey = [ Lk (14 2
re= [ o “( ;cz)
oA
T QP f JaAs ds f ds In( 2+ kz) (39)
= —Q(oeé‘) (40)
where
and
Ay=vEs  VE~O(Q). ' (42)

Equation (40) was also obtained in [3] with a slight difference by a factor /& due to the
rescaling (7). Note that in (39) the momentum cutoff of the k; integral was changed from
A to JeeAs because of the anisotropic parameter ¢, and that of the k; integral is infinite
because the Euclidean time axis is continuous without the lattice spacing.

Now we take the renormalization condition as

1 8VE 1 QVes
N 080 |py==0 N B0¢ ’};”;?fi?f,’

1 N-1_ & 1
=5 W= *

where (38) was used for the second identity and ‘Wf'""2 (A?) is given by (40). Then LRNO can
be obtained from (34) with o, = 0, using (38) and (43)

. 1 2 h I
2f; 2” ﬂﬁz ﬁL' ﬁL
where we have introduced the dimensionless quantities
- N |np|? - N-1 o -
lnNc]Z = ﬁ% Si= N frAz B=5A L'=L'A (45)

and the functions g, s and h were defined in (16)-(18), respectively. The equation of the
critical line is obtained by setting iy, = 0 in (44)

g(ﬁ)+~2. stin B By B _x (46)

mpt  BL BL [

Since LRNO and the equation of the critical line have a hidden exchange symmetry between
B and L', it is sufficient to consider only the L' > 8 region. It is convenient to use (44) to
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investigate this region, which is the reason why we preferred the unsymmetrized expression
of AW, (15); for L' > 8, LRNO (44) can be approximated by

i 1 [303)+ 2 ln(l—eXP(—w/L'%(Zirp)z))+h(if)]

=5 F  9m 1 — exp(—2mp) “n

nf2  BL

—

BL'
where p = L'/8. In order to find more simple expressions for LRNO and the critical line,
consider the limiting cases for 4 and L',

(i) The case of low temperature and large size (Le. large f and L' )
For L' 2 ,8 1

.o 1(r () mﬂ) 43
]nNcl fr (J’I'g)z-l_n'ﬁi' ( )

where we neglected the second term in the bracket of (47). LRNO for ﬂ >L > 1is
obtained by exchanging B and L' in (48). _ )
Now we consider the infinite-size limit (L’ — c0) at low temperature using (48)

- 2'_1(1_ 8(5))
W= 2\F T

1/1 1
Ed Bl B - 4
(G- ) @

Here we used the asymptotic expansion of g(8), for large §

e P .. (50)

where K1(f) is a modified Bessel function of order one. According to the experimental
evidence, assume that there exists LRNO at zero temperature (,6 — 00). Then f; > 0 and
from (43) we obtain the condition which the coupling constant f (= (VN — 1 /NYfFA?) must

satisfy

. QY

F<Zan=F &)
in terms of f;

I 1 1

=== . " ’ ’ (32)

L :

To be physically meaningful |7, |> must be positive definite in (49) so that

6/f. =Ty ' (53)
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where T = £~ and Ty is the Néel temperature in the infinite-size limit. Considering the
rescaling of the coupling constant f (7) which was performed earlier, it can be shown that
Ty o a'/* for small . Thus when ¢ = 0 (i.e. in 2+ 1 | dimensions), Tn = 0, which is
consistent with the Mermin—-Wagner theorem. In terms of T equation (49) can be rewritten
as

liin [* = (@5 — 7). (54)

In the infinite-size limit, LRNO appears if and only if T < Ty or B > fy. Alternatively, at
zero temperature, LRNO exists if and only if £’ > L{; (= Bx), where L, may be called the
Néel periodic length.

At this point we give a numerical estimation of physical parameters using the
experimental results on high-temperature superconductors {3,5]. We take La;CuO,4 as 2
sample. Then we have ¢ = 3. 8 A, the shortest Cu—Cu distance in the Cu-O planes and
a3 = 6.6A, the distance between the planes, and the anisotropic parameter o =~ 1075,
Using (36), (37) and (42), & = 0.52. Then £, = 8660 by (51). Using (53) f; can be
determined from the Néel temperature in the infinite-size limit, Ty ~/ 200K. Since 1A &
2285 x 107K, A = 1.5 x 107 K using (36). Then Ty = Tn/A = 1.3 x 1075(« 1), which
makes our low-temperature expansion reasonable. Equation (53) gives fi = 3.4 x 10%°,
f=1and I’ = 1 correspond to T = A ~ 15 x 107K and L' = A~ ~ 154
(or L =~ 0.0048A <« lattice constant!), respectively. It must be emphasized that our
theoretical investigation will be connected with the magnetic property of the real high-
temperature superconductor La;CuQO, only at relatively low temperature (e.g. below the
melting temperature of the lattice structure). Our results for very high temperature or very
small periodic length must be regarded as purely theoretical results of the CP¥~! model
which are independent of real materials, . .

Now we find the equation of the critical line: for L' 2> 8 3 1, using (48)

a2y

/ i @Ay
1 1
~oh (E B 355) o

This predicts the existence of the asymptotic line,  — By as I’ — co. In addition, the
equation of the critical line for 8 2> L’ 3> 1 is obtained by exchanging 8 and L’ in (55).

(ii) The case of high temperature and small size (i.e. small B and ')

For § and L'« 1, the system has much higher temperature than the momentum cutoff and
much smaller size {or periodic length) than the lattice constant in the third space dimension.
Hence this case can exist only as a very unstable state.

Using (A6), we find LRNO for small § and L/

- 1 1 . 1

up to order O (1). The terms neglected here are much less than the O (1) term in the region
where LRNO appears, which will be justified soon. Equation (56) has the same form as
LRNO (28) in 1+ 1 dimensions and has a hidden exchange symmetry between g and L'.
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As in 1+ 1 dimensions (see (21), (22) and (30)), f; can be absorbed in the rescaling of B
and L'.

Now we obtain the equation of the critical line by setting iy, =0 in (56) for small ﬁ
and L’

T

ki

p=dz exp( y+3 S+ )[n(ip)lz- : 67

To e:gpress_'this in more familiar form, consider the £’ > B region. Using (29), the upper
(i.e. L' 2 B) critical line is approximated by

. 65 B 1 4x?
L -—;ﬁ(]naﬁ-}’—i—*}:—). - (58)

The lower critical line is automatically obtained by exchanging 8 and L'. On the upper
critical line (58), pB and pL’ are much less than the O (1) term for the small 3 and L
limit. Since LRNOQ appears between the upper critical line and the lIower one (see case (jif)
below), the neglect of some terms in obtaining (56) is reasonable. Note that in (56)—(58)
the coupling constant term is negligible for La;CuOQy, since f~! ~ 1071,

(ifi) The case f = L'
From equation {44)

- 1 L (g(B)
7w, |2 =5}-";'-2—32(—‘—+2 (3 13 ﬁ)-’r-h(ﬁ)) (59)

Using (48) and (56), we can find the appearance of LRNOfor =L > land f =L’ « 1,
respectively. Moreover, through the numerical analysis of (59), we can see that there exists
LRNO on the whole § = L' line. Thus LRNO appears in the region between the upper and
lower critical lines. Of course, this can easily be seen from the fact that the 8 = L' line
meets the region where LRNO appears in the infinite-size limit (£’ — ©0), that is, they
belong to the same region in the phase diagram.

So far we have obtained LRNO and the equations of the critical line in the general case and
the limiting cases. For the parameter values of the typical high-temperature superconductor
La;CuOy, we will plot these equations on logarithmic scales since physical quantities have
a very broad range. Figure 4 shows the phase diagram (or the critical lines). The full
curves are obtained by solving the exact equation of the critical line (46) numerically. The
upper broken curve is the combination of two approximate equations of the critical line in
two limiting cases, that is, (55) for the low-temperature and large-size case and (58) for the
high-temperature and small-size case. The lower critical lines are obtained automatically by
exchanging the coordinates In 8 and In L’ of the upper ones using the exchange symmetry
of § and L'. In the limiting cases approximate critical lines follow the exact one (46) very
closely. The asymptotes of the critical lines which exist in the low-temperature and large-
size region are In 8, In L' = %ln( Je/6) & 11.23 (see case (i)). LRNO appears in region I but
not in region II. If we see the phase in terms of the spin mass gap o, there is dynamical
mass generation in region II but not in region I. The structure of the phase diagram is
very different from that of the (1 + 1)-dimensional infinite-N CPN~! model: for fixed
Inl’ > f.’N, there is only one critical temperature, as seen from figure 4, while there are
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Figure 4. The phase diagram in the In § and In L’ space. The full curves are obtained by
solving the exact equation of the critical line (46) numerically. The broken curves are obtained
by the approximate equations of the critical line: the upper broken curve is the combination of
(55) for low-temperature and large-size and (58) for high-temperature and small size. The lower
critical line is automatically obtained by the exchange of B and L. Note that the approximate
critical lines fit the exact ones very well for the limiting cases. LRNO exists in region I but
not in region II. The critical lines approach the asymptotic lines Inf = In fy(= 11.23) and
Ini'=n Zﬁ = In fy in the low-temperature and large-size limit, For In L' > In £Y,, there is
only one critical temperature but two critical temperatures exist for In L’ < In f,;q.

two critical temperatures for InZ’ < InZj. As we decrease the periodic length L from
infinity, the Néel temperature increases along the upper critical line.

The existence of two critical temperatures may be detected by experiments, since the
boundary value f.;, corresponds to Ly = 360A for La;CuQ,. The only critical temperature
for L = Ly is T, = 4100K, since In 3; ~ 8.2. Numerical values must be regarded as rough
approximations to the real situation. For L < Ly, there exist two critical temperatures, T,
and T, (T, < Ti,), such that LRNO appears only when T, < T < T,. As emphasized in
case (i), our results will be valid for real materials only below the melting temperature so
that the lattice structure is not destroyed. Since T, is higher than the critical temperature
for L = Ly, it may be difficult to detect it. However, since T;, increases from zero as L
decreases from Ly, it is possible to detect the existence of T, such that LRNO vanishes for
0 < T £ T, If we consider ordinary antiferromagnetic materials with & & 1, we will have
much larger Ly so that experiments become more accessible.

Figure 5 shows LRNO In 7iy, as a function of In § for various fixed values of In ', which
are obtained from (44). Approximate expressions (47), (48) and (56} of LRNO give nearly the
same graphs as figure 5. As expected from figure 4, there is only one critical temperature for
fixed InL' > In ih, while two critical temperatures exist for fixed In L' <n Ly. However,
the system with L < a3 (lattice constant for the third space dimension) will be physically
very unstable.

Finally we discuss the validity of our results in the real situation. The stationary phase
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Figure 5. Lrwo Infiy, as a function of Injg for various values of InL’; that is, In[/ =
—5,0,5,10, 12, co for curves (a@)=(f), respectively. These LRNOs are obtained from the exact
equation (44). As expected from figure 4, the cases (a)-{d) have two critical temperatures
between which LRND appears, while the cases (¢) and (f) have one critical temperature.

method (the saddle-point or the one-loop approximation) adapted to finding LRNO and the
equation of the critical line yields the exact result in the large-N limit of the CPY¥~! model
[13]. But for real solids, N is 2 since the spin of electrons is % The validity of our
results may be suspect in the real situation. However, since the theory is perturbatively
non-renormalizable in d > 1, it is expected that the quantum fluctuation in higher-loop
order is not so large as to change drastically the nature of the phase diagram [3, 5]. In fact
the results of the stationary phase approximation for the correlation length as a function of
temperature in the (24 1)-dimensional O (3) o model with infinite size is in good agreement
with those of the Monte Carlo simulation [18, 19]. Hence we expect our results to work
well for real solids.

5. Conclusions

We have investigated the finite-temperature Néel transition of the anisotropic large-N
CP¥~! model with one periodic spatial dimension using the effective potential method.
We obtained the effective potential as a function of |ry,| and o, where the first N — 1
components of the n (%) field are integrated out and only one component ny (fiy)} is left, in
order to examine the appearance of LRNO. The anisotropic parameter « is absorbed in the
redefined periodic length L'. The finite-temperature effective potential is symmetric vader
exchange of  and L’. Thus LRNO and the equation of the critical line, which are obtained
from the equilibrium (stationary phase) conditions of the effective potential, respect the
same symmetry,

First the (1 + 1)-dimensional C P¥~! model was analysed on toroidal spacetime (i.e. at
finite temperature and finite size). We find LRNO and the equation of the critical line. But
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LRNO is forbidden by the Mermin-Wagner—Coleman theorem. Thus we conclude that the
one-loop approximation fails badly for large but finite N. However, it is exact for infinite N.
Hence our results in 141 dimensions are valid and LRNG can exist; for the infinite-N C PN-1
model, which is not a real physical system, there exists Lo such that our system has two
critical temperatures for fixed L satisfying 0 < I < L, while it has no critical temperature
for L » L,. In addition, similar phenomena also occur for the (2 4 1)-dimensional C P¥-1
model with one periodic spatial dimension [20].

The (3+1)-dimensional CPY~! model is investigated as 2 model of antiferromagnetism
in high-temperature superconductors (e.g. La;CuQ4), where the anisotropic parameter
represents the weak interlayer coupling. We give the third space dimension orthogonal
to the planes a perjodicity L. LRNO and the equation of the critical line are obtained. The
exact formulae are very complicated and thus we find approximate ones in the limiting
cases (the large B and L’ case and the small § and L’ case) which are very simple and
fit the exact ones very well. We use the physical parameters of LapCuQ4 for comparison
with the real situation. The structure of the phase diagram is very different from that of the
(14 1)-dimensional infinite-¥ C PN~! model. Our system has only one critical temperature
for L 2 Ly but two for L < Ly; on the other hand, for real solids, N = 2. The stationary
phase method used here is essentially the same as the large-N approximation of the C PY~!
model. However, it is expected that the higher-loop effect is not so large as to change
drastically the structure of the phase diagram.
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Appendix

For small § and I’ (ie. B and L’ « 1), we find the series expansion for each term in (44).
First consider g(z) for small z, g(0) = 0 and

dg(z) [ 1
fz +z2exp{/x2 + 22} —1
_r =z 2
ﬂ_2+21n4 + £ +O(z) (AL)
where we have used (26). Integrating (Al)
@="2+Zm +1( -l—ln(4:r))2+0(3) (A2)
gZ)= ) 4 b4 Y ¥ 3 Z z
for small z. Hence, for small §
gh 1 1 . i( 1 ) .
x—g; = Zéf; + o Ing+ P Y 2 In(4z) | + O(8). (A3)
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Next consider s(£’; 8, L") for small 8 and L’

[1 —exp(— 2mpny'1 + (B/27n)?) ]

1 — exp(—2xrpr)

s(L58. L= In
n=1

=] ﬁLr B'SEI Eff
"ZI“[ { (27rn)+8(27m)3+ (Z:rrn) +}

_BrE1 1 BL &
e Hznez’fﬂ"—l 6473 Zn%z”ﬂﬂ -1

(_,BL")Z oo 1 ez:rpn

322 L n2 (P00 — 1)2 +

Then, using (27),

2 e, a1 &1 1
ES(L vﬁvL) ~ 'ﬁ;;(eﬁfpn _1)
fol .
=~ ——Inn(ip)
Finally, for small L,
My _ 1,0 L
BI+ 25 24 2880
As a result, for small § and L',
HOMN g oen o BEY L B 1
5 ,st (£ B, I+ Tl 2lnnGp) —In— -y +3 |+
References

[1] Wen X G and Zee A 1988 Phys. Rev. Lext 61 1025
Haldane F D M 1988 Phys. Rev. Letr. 61 1029
Fradkin E and Stone M 1988 Phys. Rev. B 38 7215
[2] Mermin N D and Wagner H 1966 Phys, Rev. Ler. 17 1133
Caspers W J 1989 Spin Sysrems (Singapore: World Scientific)
{31 Ichinose I and Yamamoto H 1990 Mod, Phys. Lest. A 5 1373
f4] Davydov A § 1990 Phys. Rep. 190 191
(5] Yamamoto H, Tatara G, Ichinose I and Matsui T 1981 Phys. Rev. B 44 7654
[6] Kim 8 K, Namgung W, Sch K 8 and Yee J H 1987 Phys. Rev. D 36 3172
(71 Song D Y and Kim J K 1950 Phys. Rev. D 41 3165
[8]1 Song D Y 1992 Phys. Rev. D 46 737
[9] Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320

1573

(Ad)

(A5)

(A6)

[10] Zinn-Justin J 1989 Quantum Field Theory and Critical Phernomena (New York: Oxford University Press)

[11} Jackiw R 1974 Phys. Rev. D 9 1686
[12] Coleman S 1973 Commun. Math. Phys. 31 259



1574 Seok-In Hong and Jae Kwan Kim

{13] Polyakov A M 1987 Gauge Fields and Strings (Contemporary Concepts in Physics, vol 3) (Switzerland:
Harwood Academic) )
[14] Isham C J 1978 Proc. R. Soc. A. 362 383
Toms D J 1980 Phys. Rev. D 21 928; 1980 Phys. Rev D 21 2805
Ford L H 1980 Phys. Rev. D 21 949
[15] Hetrick J E and Ho C . 1989 Phys, Rev. D 40 4085
[16] Hosotani Y 1989 Ann. Phys., NY 190 233
[17] Ginsparg P 1990 Fields, Strings and Critical Phenomena (Les Houches Lectures, 19588} ed B Brezin and
I Zinn-Justin (Amsterdamy; North-EHolland)
[18] Manousakis E and Salvator R 1989 Phys. Rev. Lett 62 1310; 1982 Phys, Rev. B 40 2205
[19] Rosenstein B, Warr B J and Park § H 1990 Nucl. Phys. B 336 435
[20] Hong S I and Kim J K 1993 Preprint KAIST-CHEP-53/31/1



