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Finite-temperature N6el transition in the C PN-' model with 
one periodic spatial dimension 
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Department of Physics, Korea Advanced Institute of Science and Technology, 373-1, Kusung- 
dong, Yusung-kn. Taejon, Korea 

Received 6 September 1993, in final form 11 Ouober 1993 

Abstract We investigate the finite-temperature N&l transition of the anisotropic I-N 
CPN-' model with one periodic spatial dimension using the effective potential method. Lnng- 
range N k l  order (mo) and the equation of the critical line are obtained. In 1 f l  dimensions. the 
one-loop approximation fails badly for large but finite N by the Me&Wagner theorem. But 
for infinite N. which is not realistic, it becomes eract and the appearance of L&O is valid. The 
(3 + 1)-dimensional CPN-' model is investigated as a model of antiferromagnetism in high- 
tempeIaNre superconductors. where the anisotropic parameter represents the we& interlayer 
coupling. The phase structure is very different from that of the (1 + 1)dimensional infinite-N 
CPN-' model. 

1. Introduction 

It is well known that the occurrence of high-temperatuie superconductivity is closely related 
to the spin degree of freedom of electrons in the Cu-0 planes which can be described by 
the antiferromagnetic Heisenberg model. In the continuum limit this model is reduced to the 
CP' nonlinear model as a low-energy effective field theory [I]. Since we are concerned 
with the phase transition of N k l  order which is a long-range phenomenon, it is convenient 
to consider the CP' model instead of the lattice Heisenberg model. 

According to the Mermin-Wagner theorem [2], the Heisenberg model in space 
dimension d S 2 does not exhibit spontaneous breakiig or the appearance of LRNO at 
any non-zero temperature. It has been shown that the Mermin-Wagner theorem holds for 
the IargeN CPN-' model in the infinite-size limit [3]. 

On the other hand, high-temperature superconductivity is characterized by a layered 
(or planar) structure [4] and has been thought to be described effectively by (2 + 1)- 
dimensional physics (e.g. the Chem-Simons theory). Thus if we regard high-temperature 
superconductivity as a (2 + 1)-dimensional phenomenon, it follows from the Mermin- 
Wagner theorem that high-temperature superconductors cannot have LRNO at any non-zero 
finite temperature. This contradicts the actual fact that some undoped materials have LRNO 
below some critical temperature T, (Niel temperature). Therefore the appropriate model of 
magnetism in high-temperature superconductors is the (3 + I)-dimensional anisotropic CP' 
model with weak interlayer coupling [3,5]; we will not consider their detailed smctures. 

Recently the Gross-Neveu model and the CPN-'  model in 1 + 1 dimensions were 
investigated on non-trivial topologies (i.e. on cylindrical and toroidal spacetimes) [6-8]. 
Their phase structures turned out to be rich. Physically toroidal spacetime SI x S' 
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corresponds to finite temperature [9] arid finite size [IO] (more rigorously it corresponds to 
periodicity in space). 

In the present paper we investigate the finite-temperature N&l transition of the 
(3 + 1)-dimensional anisotropic large-N CPN-' model with weak interlayer coupling and 
periodicity in the third space dimension by making use of the effective-potential method 
[9,llJ. In addition, we consider the (1 + 1)-dimensional large-N CPN-' model with 
spatial periodicity and examine the consistency with the Mermin-Wagner theorem. From 
the equilibrium condition of the effective potential we can find LRNO and the equation of 
the critical line (i.e. the phase diagram). 

In section 2 we find the finite-temperature effective potential of the (d+ 1)-dimensional 
CPN-' model with one periodic spatial dimension, and its equilibrium condition. In 
section 3 the (1 + 1)-dimensional CPN-l  model is considered. Contrary to the Mermin- 
Wagner-Coleman theorem [12], it has a region in the phase diagram where LRNO appears, 
which implies that the one-loop approximation fails badly for large but finite N .  However, 
for infinite N ,  the one-loop approximation becomes exact [13] and the existence of LRNO 
is valid. In section 4, we consider the (3 + 1)-dimensional CPN-l model as a model 
of magnetism in high-temperature superconductors. For the parameters of the real high- 
temperature superconductor La2Cu04, we obtain a phase diagram and LRNO which are very 
different from those of the (l+l)-dimensional infiniteN CPN-l model. Section 5 contains 
a summary and our conclusions. 
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2. Effective potential and equilibrium condition in d + 1 dimensions 

We find the finite-temperature effective potential of the anisotropic large-N CPN-' model 
with one periodic spatial dimension in d+ 1 dimensions. We work in Minkowski spacetime 
with the metric g,, = diag(1, -1, . . . , -1). For finitetemperature field theory we adopt 
the imaginary time formalism [9], where the time axis xo is compactified to a circle of 
circumference (-i,¶). In addition, for one periodic spatial dimension x d ,  the xd  axis is also 
compactified to a circle of circumference L which is a periodic length. 

Our model is given by the Lagrangian 

where n = (n l (x) ,  . . . , n&)) and D,n = (a,+iA,)n. Here A, and a are auxiliary fields. 
a: is the ratio of the dth-space dimensional coupling constant f d  to the coupling constant f 
in the other spatial dimensions, that is, a: = fd/f. a: gives the anisotropy (or the interlayer 
coupling) to the CPN-' model. Since the fields in Lagrangian (1) are bosonic, they are 
taken as periodic functions of xo and xd,  though the antiperiodic (or twisted) boundary 
condition can be given in a mathematical sense [14]. 

The partition function of Lagrangian (1) is given by 

Z(p ,  L )  = / Dn DE D a  D A ,  exp ( i i-ip dxo lL dxd 1 dd-'x L).  

Integrating out the first N - 1 components of n @i) fields leaving only one component 
nN (EN) [3,5, IO] in order to examine the appearance of LRNO, we obtain the effective 
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action in terms of n N ,  EN and auxiliary fields 

(3) 

where we have rescaled nN + d%tN and EN -f &i~. 
Since we are concerned with the equilibrium state, we consider only the constant 

configurations Of  n N  (TN) and U, and Set n N  = nNC, EN =  EN^. U = UC, A, = 0. 
We now make some comments about the assumption A, = 0 on spacetimes with non- 
trivial topology, any constant gauge field cannot globally be gauged to zero without altering 
the boundary condition of the quantum field along a non-contractible loop [8,15,16]. The 
non-zero expectation value of A, has an influence on the effective potential [15]. Our 
assumption A, = 0 is a special case, which may be appropriate for the investigation of 
low-energy phenomena. In this case, Lagrangian ( 1 )  is reduced to the O(2N)  nonlinear U 

model which describes the long-distance properties of the Heisenberg O(2N) model [ lo ] .  
For constant field configurations, we obtain 

and 

Here we used the fact that k" = 27"(-i@) and kd = 2scn/L (where m and n are integers) 
by the periodic boundary conditions. The primes on the summations denote the exclusion 
of the zero mode (m = n = 0). Note that Wd and Vea are symmetric under the exchange 
of fi  and L'. If we rescale 
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Since the quantum correction w d  is divergent, it needs to be renormalized. 

effective potential (8) 
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Now we find the equilibrium conditions (or the stationary phase conditions) from the 

Since we are concerned with the existence of LRNO (i.e. nNc # 0), uc = 0 from (9). Then 
WO nN, is obtained from (10) after some renormalization. 

3. Ned transition in 1 + 1 dimensions 

In 1 + 1 dimensions, the appearance of UNO is forbidden by the Mermin-Wagner-Coleman 
theorem. For the (1 + 1)-dimensional large-N CPN-’ model, we examine whether or not 
this is the case in the one-loop approximation. 

In order to find the effective potential (8), we evaluate W, (uC; p, L). In 1 + 1 dimensions 
we take 01 = 1, since there. is only one spatial dimension and thus the anisotropy of space 
is meaningless 

(1 1) 
By successive applications of the summation formula 

where Wp’(uc) is the one-loop contribution to the effective potential in R2 and 
AWl(uc; p ,  L) is the effect of the change of topology (i.e. finite p and L) 

I. +-In[ BL L& 
2 1 -exp(-L&) 
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Note that A W1 (U& ,Cl + cc, L + CO) = 0. A W, (U& p. L )  has a hidden exchange symmetry 
between B and L. Though we can write A Wl (U& p,  L )  in an explicitly symmetrized form 
withrespecttop andL (thatis, AW1(uC;p,L) = f [ A W , ( u , ; p , L ) + A W , ( u ~ ; L , p ) ] ) ,  we 
prefer the unsymmetrized expression (15) for later convenience. 

Now we define some useful functions 

g(z) /m dx In [ 1 - exp(--.LFPj] 
0 1 - exp(-x) 

Since g(z) is manifestly finite, the summations in AWl(uc; p, L )  are also finite, thus 
AW, is finite but W:* is divergent. Therefore in order to renormalize !Jeff, it is sufficient 
to renormalize the effective potential V$ in R2, where 

in the infinite momentum cutoff limit (A -+ eo). The cutoff dependence can be absorbed 
in the renormalization of the coupling constant f .  If we take the renormalization condition 
as 

where M is the renormalization point and 5 the renormalized coupling constant, we obtain 
the renormalized effective potential in R2 

with 
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Note that fr was absorbed into uo. Finally we find the renormalized effective potential V, 
at finite temperature and finite size 
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K(lnNcl, 0;; p, L) = Vf(lnN,I, ud + (N - l)AWi(cc; B, L) 

Using this renormalized effective potential V,, we find the equilibrium condition (10) 

* l  1 
+2c- n exp{&Ln/B] - 1 

"=l 

where for the last identity we expanded (24) for small uc with the help of the integration 
formula [9] 

for small E and az. Here y(= 0.577.. .) i s  the Euler constant. Since we are interested in 
the appearance of LRNO (i.e. nNc # 0), o, = 0 from (9). Setting U, = 0 in (25) and using 
the identity [V 

1 - - -EL -1n [q(ii)] 
n exp[2~Ln/,9] - 1 12 p "=I 

and LRNO is given by 

where q is the celebrated Dedekind q function 1171 which is defined as 
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with q ( z )  = exp(2rriz). Here we introduced the dimensionless quantities 

In (28), l A , ~ ~ l ~  must be positive definite in order to be physically meaningful, otherwise it 
is set to be zero. The equation of the critical line is obtained from (28) by setting i i ~ ~  = 0 
exchanging B and e for convenience 

t = 4ae-?[q(ij/i)]’. (31) 

Note that both LRAO (28) and the equation of the critical line (31) have a hidden exchange 
symmehy between B and t originating from the same symmetry of the effective potential. 

0.0 1.0 2.0 3.0 4.0 5.0 f 

P 

Figure 1; The phase diagram in the and space. - m o  
appears in region I but not in region 11. For L > La(% 
4.99). the system has no critical temperame (no phase 
haositiq) while it two critical temperatures (two phase 
tnnsitions) for 0 c L < 4. 

Figure 1 shows the phase diagram (or the critical line). LRNO appears in region I of the 
phase diagram but not in region 11. The existence of L W O  contradicts the Mermin-Wagner- 
Coleman theorem. Hence this implies that the one-loop (or large-N) approximation fails 
badly for large but finite N .  However, for the model with infinite N which is not a real 
physical system, the one-loop approximation is exact and our resuits are valid; that is, LRNO 
can exist. In the rest of this section, we will restrict ourselves to the infinite4 case. On 
the other hand, if we see the phase in terms of the spin mass gap U,, the opposite situation 
occurs by (9). That is, there is dynamical mass generation in region I1 (i.e. uc # 0) but 
not in region I (i.e. U, = 0) [SI. In the phase diagram there exists io such that the system 
has two critical temperatures for fixed i satisfying 0 < i c io, while it has no critical 
temperature for i > io 

Lo = 4rre-Y[q(izo)~~ x 4.99 

where ZO(% 0.5235) is the value such that q’(iz0) = 0. q(izo)(% 0.8382) is the maximum 
of q(iz). By the symmetry between B and E, the same holds under the exchange of ,9 and 

Figure 2 shows LRNO AN, (28) as a function of j and t. Figure 3 is the cross sections 
of figure 2 as functions of j for various fixed values of i < io. As expected from figure 1, 
there exist two critical temperatures such that LRNO appears between them. 

i. 
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Figure 2. The threedimensional plot of W O  iipc as a function of and i. 
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Figure 3. I A N 0  &c as a function of for vaious values of i < io; that is, i = 1 .2 .3 .4  
for cuwes ( n x d ) .  respectively. As expected from figure 1. these cases have two critical 
temperatures between which LRNO exists. 

4. Nee1 transition in 3 + 1 dimensions 

In this section we consider the effect of finite temperature and finite size (or periodicity) in 
the third space dimension orthogonal to the planes on the N&l transition of the anisotropic 
CP"' model in 3 + 1 dimensions, which is regarded as a model of the magnetism in high- 
temperature superconductors. In 3 + 1 dimensions the appearance of LRNO is not forbidden 
by the Mermin-Wagner theorem. 

From (8), the effective potential is given by 



where 

with L' = L/&. We write W3 as W3 = Wf'+AW3 where Wf' is the one-loop contribution 
to the effective potential in R4 and AW3 is the effect of the change of topology (i.e. finite p 
and L'). The cutoff dependence of Wf', which is manifestly divergent in the infinite cutoff 
limit, cannot be absorbed into only one coupling constant renormalization since Wf' has 
two kinds of infinite terms [9]. Hence Vea is not renormalizable in the infinite momentum 
cutoff limit. 

However, our interest is a physical quantity measurable by experiments, that is, LRNO 
nNc which is obtained from the equilibrium conditions. We will find LRNO with finite 
momenhun cutoffs related to the lattice constants. The equilibrium condition (10) is 

where 

In order to regularize (35) and renormalize (34) we inhoduce the finite momentum cutoffs 
[3,5]: A is a two-dimensional momentum cutoff determined from the two-dimensional 
lattice constant a by the relation 

Aa=& (36) 

which conserves the area of the Brillouin zone for the antiferromagnetically ordered state 
in the Cu-0 plane. In addition, A3 is the third space momentum cutoff which is related to 
the third space lattice constant a3 by 

&a3 = II (37) 

then 

We restrict ourselves to the 0; = 0 phase where LRNO appears 
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Here 
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and 

A3=&A &-O(l ) .  (42) 

Equation (40) was also obtained in [3] with a slight difference by a factor f i  due to the 
rescaling (7). Note that in (39) the momentum cutoff of the k3 integral was changed from 
A3 to f i A 3  because of the anisotropic pararneter~a, and that of the k4 integral is infinite 
because the Euclidean time axis is continuous without the lattice spacing. 

Now we take the renormalization condition as 

where (38) was used for the second identity and WP’(A’) is given by (40). Then LRNO can 
be obtained from (34) with 0; = 0, using (38) and (43) 

where we have introduced the dimensionless quantities 

and the functions g, s and h were defined in (16)-(18), respectively. The equation of the 
critical line is obtained by setting li~, = 0 in (44) 

Since LRNO and the equation of the critical line have a hidden exchange symmetry between 
region. It is convenient to use (44) to and L’, it is sufficient to consider only the fi > 
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investigate this region, which is the reason why we preferred the unsymmetrized expression 
of A W, (15); for 2 > j, LRNO~ (44) can be approximated by 

where p = ?/b. In order to find more simple expressions for .~ LRNO and the critical line, 
consider the limiting cases for $ and e,. 
( i )  The case of low temperature and large sue (i.e. large 
For L' 2 p >> 1 

and L') 

where we neglected the second term in the bracket of (47). LRNO for ~~ 8 > 
obtained by exchanging b and L' in (48). 

> 1 is 

Now we consider the infinite-size limit (i' -+ CO) at low temperature using (48) 

Here we used the asymptotic expansion of g@) ,  for large 6 

where K,(B) is a modified Bessel function of order one. According to the experimental 
evidence, assume that there exists LRNO at zero temperature (S -+ CO). Then 5 t 0 and 
from (43) we obtain the condition which the coupling constant (N - l / N ) f A Z )  must 
satisfy 

in terms of f 
1 1 1  _ = _ - -  
f; i A '  

To be physically meaningful I Z N , ~ ~  must be positive definite in (49) SO that 

(53) 
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where T- B-' and f~ is the N k l  temperature in the infinite-size l i t .  Considering the 
rescaling of the coupling constant f (7) which was performed earlier, it can be shown that 
f~ 0: all4 for small a. Thus when a = 0 (i.e. in 2 + 1 dimensions), ' f~ = 0, which is 
consistent with the Mermin-Wagner theorem. In terms of ?N, equation (49) can be rewritten 
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as 

In the infinite-size l i t ,  LRNO appears if and only if .c ?N or B z &. Alternatively, at 
zero temperature, LRNO exists if and only if f,' > LE, (= BN), where LE, may be called the 
N k l  periodic length. 

At this point we give a numerical estimation of physical parameters using the 
experimental results on high-temperature superconductors [3,5]. We take LaZCuO4 as a 
sample. Then we have a = 3.SA. the shortest Cu-Cu distance in the Cu-0 planes and 
a3 = 6.6& the distance between the planes, and the anisotropic parameter a % 

Using (36). (37) and (42), 8 = 0.52. Then 5 M 8660 by (51). Using (53) 5 can he 
determined from the N6el temperature in the infinite-size limit, TN M 200K. Since 1 k' 
2.285 x IO7 K, A % 1.5 x lo7 K using (36). Then i=~ = T N / A  % 1.3 x I), which 
makes our low-temperamre expansion reasonable. Equation (53) gives f; % 3.4 x 10'O. 
fi  = 1 and 2 = 1 correspond to T = A M 1.5 x 107K and L' = A-] % 1.5A 
(or L % 0.0048A << lattice constant!), respectively. It must be emphasized that our 
theoretical investigation will be connected with the magnetic property of the real high- 
temperature superconductor LazCu04 only at relatively low temperature (e.g. below the 
melting temperature of the lattice structure). Our results for very high temperature or very 
small periodic length must be regarded as purely theoretical results of the CPN-' model 
which are independent of real materials. 

Now we find the equation of the critical line: for 3 2 B >> 1, using (48) 

This predicts the existence of the asymptotic line, 
equation of the critical line for b 2 2 >> 1 is obtained by exchanging B and i' in (55). 

(ii) The case ofhigh temperature and small size (i.e. small j and L') 
For and 2 << 1, the system has much higher temperature than the momentum cutoff and 
much smaller size (or periodic length) than the lattice constant in the third space dimension. 
Hence this case can exist only as a very unstable state. 

+ & as 3 + W. In addition, the 

Using (A6), we find LRNO for small and i' 

up to order 0 (1). The terms neglected here are much less than the 0 (1) term in the region 
where LRNO appears, which will be justified soon. Equation (56) has the same form as 
LRNO (28) in 1 + 1 dimensions and has a hidden exchange symmetry between f i  and i'. 
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As in 1 + 1 dimensions (see (21), (22) and (30)), 1 can be absorbed in the rescaling of b 
and 2. 

Now we obtain the equation~of the critical line by setting i i ~ ~  = 0 in (56): for small fi  
and P 

To express this in more familiar form, consider the p > b region. Using (29), the upper 
(i.e. L' > 6) critical line is approximated by 

The lower critical line is automatically obtained by exchanging and 2. On the upper 
critical line (58), p b  and pi' are much less than the 0 (1) term for the small and 3 
limit. Since LRNO appeirs between the upper critical line and the lower one (see case (iii) 
below), the neglect of some terms in obtaining (56) is reasonable. Note that in (56H58) 
the coupling constant term is negligible for LaZCuO, since I-' - lo-". 

(iiij The case B = P 
From equation (44) 

Using (48) and (56). we can find the appearance of LRNO for b = 2 >> 1 and b = P << 1, 
respectively. Moreover, through the numerical analysis of (59). we can see that there exists 
LRNO on the whole fi  = line. Thus LRNO appears in the region between the upper and 
lower critical lines. Of course, this can easily be seen from the fact that the b = l i e  
meets the region where LRNO appears in the infinite-sizi l i t  (P + CO), that is, they 
belong to the same region in the phase diagram. 

So far we have obtained LRNO and the equations of the critical line in the general case and 
the limiting cases. For the parameter values of the typical high-temperature superconductor 
LazCuO4, we will plot these equations on logarithmic scales since physical quantities have 
a very broad range. Figure 4 shows the phase diagram (or the critical lies). The full 
curves are obtained by solving the exact equation of the critical line (46) numerically. The 
upper broken curve is the combination of two approximate.equations of the critical line in 
two limiting cases, that is, (55) for the low-temperature and large-size case and (58) for the 
high-temperature and small-size case. The lower critical lines are obtained automatically by 
exchanging the coordinates I n j  and In E' of the upper ones using the exchange symmetry 
of b and E'. In the limiting cases approximate critical lines follow the exact one (46) very 
closely. The asymptotes of the critical lines which exist in the low-temperature and large- 
size region are Ing, In f' = $ln(1/6) ? 11.23 (see case (i)). LRNO appears in region I but 
not in region II. If we see the phase in terms of the spin mass gap q, there is dynamical 
mass generation in region I1 but not in region I. The structure of the phase diagram is 
very different %om that of the (1 + 1)-dimensional infinite-N CPN-' model: for fixed 
In i' 2 In p', there is only one critical temperature, as seen from figure 4, while there are 
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-10 -5 0 5 10 15 20 
In j 

Figure 4. The phase diagram in the I n j  and hi '  space. The full curves are obtained by 
solving the exact equation of the critical line (46) numerically. The broken c w e s  are obtained 
by the approximate equations of the critical line: the upper broken curve is the combination of 
(S.5) for low-temperahue and large4ze and (58) for high-te?pe+e and small size. The lower 
critical line is automatically obtained by the exchange of f l  and L'. Note that the approximate 
critical lines fit the exad ones vely well for the limiting cases. LRNO exis! in region I but 
not in regieg'on 11. The critical lines approach the asymptotic lines ins = ~f l~(%- I1 .23)  and 
h i '  =In Lh = In,& in Ihe low-temperature and lq&size limit. For In L' 2 In& there is 
only one critical temperahlre but two critical tempemoms exist for In i' c In L;V. 

two critical temperatures for I n 2  e hiN. As we decrease the periodic length L from 
infinity, the Nkel temperature increases along the upper critical line. 

The existence of two critical temperatures may be detected by experiments, since the 
boundary value iN corresponds to LN = 360A for LazCuO4. The only critical temperature 
for L = LN is T, = 4100K. since In j ,  ez 8.2. Numerical values must be regarded as rough 
approximations to the real situation. For L < LN, there exist two critical temperatures, TcL 
and Tc2 (Tc, < TQ), such that LRNO appears only when Tc, < T < T,. As emphasized in 
case (i), our results will be valid for real materials only below the melting temperature so 
that the lattice s'uucture is not destroyed. Since T', is higher than the critical temperature 
for L = LN,  it may be difficult to detect it. However, since Tc, increases from zero as L 
decreases from LN, it is possible to detect the existence of c, such that LRNO vanishes for 
0 < T < To. If we consider ordinary antiferromagnetic materials with a 1, we will have 
much larger LN so that experiments become more accessible. 

Figure 5 shows LRNO In& as a function of l n g  for various fixed values of In 2, which 
are obtained from (44). Approximate expressions (47), (48) and (56) of LRNO give nearly the 
same graphs as figure 5. As expected from figure 4, there i s  only one critical temperature for 
fixed In 2 2 In 2N, while two critical temperatures exist for fixed In 2 < In 2N. However, 
the system with L < a3 (lattice constant for the third space dimension) will be physically 
very unstable. 

Finally we discuss the validity of our results in the real situation. The stationary phase 
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1 
In j 

Figure 5. WO InEN, as a function of Ing for various values of hi'; that is, hi' = 
-5.0.5.  10,12. m for curves (aw), respectively. These LRNOS are obtained from the exact 
equation (44). As expected from figure 4, the cases (a)-(d) have WO critical temperawes 
between which LRNO appears. while the cases (e) and (f) have one cdtiical temperahwe. 

method (the saddle-point or the one-loop approximation) adapted to finding LRNO and the 
equation of the critical line yields the exact result in the large-N limit of the CPN-' model 
[13]. But for real solids, N is 2 since the spin of electrons is $. The validity of our 
results may be suspect in the real situation. However, since the theory is perturbatively 
non-renormalizable in d > 1, it is expected that the quantum fluctuation in higher-loop 
order is not so large as to change drastically the nature of the phase diagram 13.51. In fact 
the results of the stationary phase approximation for the correlation length as a function of 
temperature in the (2+ 1)-dimensional O(3) U model with infinite size is in good agreement 
with those of the Monte Carlo simulation [IS, 191. Hence we expect our results to work 
well for real solids. 

5. Conclusions 

We have investigated the finitetemperature N&l transition of the anisotropic l a rge4  
CPN-' model with one periodic spatial dimension using the effective potential method. 
We obtained the effective potential as a function of l n ~ ~ l  and o;, where the first N - 1 
components of the n 0 field are integrated out and only one component nN fi~) is left, in 
order to examine the appearance of LRNO. The anisotropic parameter (Y is absorbed in the 
redefined periodic length L'. The finite-temperature effective potential is symmetric under 
exchange of ,9 and L'. Thus LRNO and the equation of the critical line, which are obtained 
from the equilibrium (stationary phase) conditions of the effective potential, respect the 
same symmetry. 

First the (1 + 1)-dimensional CPN-' model was analysed on toroidal spacetime (i.e. at 
finite temperature and finite size). We find LRNO and the equation of the critical line. But 
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LRNO is forbidden by the Mermin-Wagner-Coleman theorem. Thus we conclude that the 
one-loop approximation fails badly for large but finite N. However, it is exact for infinite N. 
Hence our results in 1+1 dimensions are valid and LRNO can exist; for the infinite-N CPN-’ 
model, which is not a real physical system, there exists such that our system has two 
critical temperatures for fixed satisfying 0 < L e io, while it has no critical temperature 
for 2 io. In addition, similar phenomena also occur for the (2+ 1)-dimensional CPN-’ 
model with one periodic spatial dimension [20]. 

The (3+1)-dimensional CPN-’ model is investigated as a model of antiferromagnetism 
in high-temperature superconductors (e.g. LaZCuOd), where the anisotropic parameter 
represents the weak interlayer coupling. We give the thud space dimension orthogonal 
to the planes a periodicity L. LRNo and the equation of the critical line are obtained. The 
exact formulae are very complicated and thus we find approximate ones in the limiting 
cases (the large and i‘ case and the small b and 2 case) which are very simple and 
fit the exact ones very well. We use the physical parameters of LaZCuO4 for comparison 
with the real situation. The structure of the phase diagram is very different from that of the 
(1 + 1)dimensional infinite4 CPN-’ model. Our system has only one critical temperature 
for L > LN but two for L < LN; on the other hand, for real solids, N = 2. The stationary 
phase method used here is essentially the same as the large-N approximation of the CPN-’ 
model. However, it is expected that the higher-loop effect is not so large as to change 
drastically the structure of the phase diagram. 

Seok-In Hong and Jae Kwan Kim 
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Appendix 

For small ) and i’ (i.e. 
First consider g(z) for small z ,  g(0) = 0 and 

and i’ << I), we find the series expansion for each term in (44). 

x z z  yz 
2 2 4 x 2  

= -+ - In -  + - + 0(2) 

where we have used (26). Integrating (Al) 

xz zz 
g(z) = - + - In z + 

2 4  

for small z. Hence, for small B 

(A3) _ = _  
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Next consider s(i'; B ,  i') for small B and 3 

Then, using (27), 

As a resdt, for small and 2, 
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2 h v ( i P ) - l n - - y + -  2 'I +.... . (A6) B 
Y + ==-s(L'; 6, L') + - = -- n p  FL' BL' 4n 4n 
g ( B )  2 - - " h(i') 
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